Posted on

The Difference Between a Limit Controller and a Process Controller

Learn more about the difference between limit controllers and process controllers.

When it comes to kiln temperature controllers, there are two broad categories: process controllers and limit controllers. So, what’s the difference?

Process Controllers vs Limit Controllers: Function & Use Cases

If you use an at home kiln or a studio kiln, chances are you’re more familiar with a process controller. Process controllers, also known as programmable digital controllers, automatically adjust kiln temperature to execute kiln firing schedules with very little user involvement.

Limit controllers, on the other hand, are currently more commonly used with ICS control systems, industrial kilns, and manual kilns. Also known as high limit or safety limit controllers, limit controllers monitor kiln temperature and ensure that the kiln automatically shuts off if the kiln exceeds a specified temperature.

Process controllers execute process; limit controllers enforce limits. Process controllers are a primary kiln control method. Limit controllers, while not usually suitable to be the primary control method, are an important part of kiln safety and can protect you, your equipment, and your property in the case of relay or system failure.

The TAP II Kiln Controller is an example of a process controller that allows users to automatically execute full firing schedules.
The TAP II Kiln Controller is an example of a process controller that allows kiln operators to automatically execute full firing schedules.

 

If I Already Have a Process Controller Why Would I Need a Limit Controller?

If you’re reading this article and you already have a process controller, you might be asking: Why would I need a limit controller?

The answer? Safety.

Even though advanced kiln controllers, such as TAP and TAP II, provide max temperature safety shutoff in case of relay failure, redundancy is the key to safety. Safety limit controllers such as TAP Monitor add an additional layer of safety. When installed and wired to a redundant safety relay, TAP Monitor will automatically shut off your kiln if it exceeds a specified temperature – even if your primary relay fails.

Benefits of TAP Monitor Limit Controller

TAP Monitor is an advanced, user-friendly kiln limit controller and pyrometric device that can be paired with any manual or automatic kiln controller to provide safety shutoff and remote temperature monitoring.

Available as a plug-and-play standalone pyrometer limit controller or as a set of configurable components for DIY installs and oven builds, TAP Monitor gives ceramicists, potters, glass artists, and bladesmiths the ability to:

  • Wire TAP Monitor to a safety relay to provide redundant safety shutoff.
  • Precisely monitor the temperature of their kiln, oven, or forge via the TAP Kiln Control Mobile App.
  • View digital pyrometric readouts from any manually controlled kiln, including remote readouts via TAP Kiln Control Mobile when TAP Monitor is connected to a local network.
  • Easily add precise, real-time digital temperature readings to their manual kiln or oven.
  • Pair TAP Monitor with their existing automatically or manually controlled kiln for remote monitoring.

The TAP Monitor is a limit controller that adds remote temperature monitoring and safety shutoff for kilns.

Explore Kiln Control Solutions by SDS Industries 

In addition to the TAP Monitor Limit Controller, the TAP Ecosystem includes a variety of programmable kiln controllers that give artists complete control of their kilns. The TAP and TAP II Controllers by SDS Industries provide users the most advanced, precise, and easy-to-use programmable digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of programmable kiln controllers, pyrometers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Shop programmable temperature controllers.

Posted on

How to Use a Kiln Temperature Monitor

Using a kiln temperature monitor lets you monitor kiln firing temperatures and adds kiln safety.

A kiln temperature monitor is a device that monitors kiln firing temperatures. Typically, when people refer to a kiln temperature monitor, they’re referring to a device specifically dedicated to temperature measurement, such as a pyrometer or a limit controller.

In the next section we’ll explain the difference between limit controllers, pyrometers, and process controllers – because all three devices technically monitor kiln temperature. Then, we’ll explain the benefits and use cases of a dedicated kiln temperature monitor.

Understanding the Difference Between Pyrometers, Limit Controllers, and Process Controllers

Wait, but doesn’t my programmable digital kiln controller already monitor my kiln firing temperatures? Yes, digital kiln controllers (such as TAP Controllers!) receive temperature inputs from the thermocouples and display your kiln’s temperature on the controller interface (or your smartphone with the TAP Kiln Control Mobile App!).

However, digital kiln controllers are process controllers, meaning their primary role isn’t to monitor temperature but rather to adjust kiln firing temperatures according to the programmed firing schedule.

Pyrometers, on the other hand, are devices whose sole function is to monitor kiln temperature. And limit controllers, or high limit controllers or safety limiters, are pyrometers with additional control functions that allow users to pre-program their electric kiln to automatically shut off if the kiln exceeds a specified temperature.

What’s The Point of a Dedicated Kiln Temperature Monitor?

Okay, but if your primary process controller already lets you monitor kiln temperature, then what’s the point of a dedicated kiln temperature monitor? The answer: kiln safety.

More advanced kiln controllers, such as TAP, provide max temperature safety shutoff in case of relay failure. But even then you’re still relying on a single controller, a single relay, and a single thermocouple to ensure the safety of your kiln, yourself, and your property.

When it comes to safety, especially at high kiln firing temperatures, redundancy is key. A dedicated kiln temperature monitor adds an additional level of safety by acting as a safety redundancy device. When installed and wired to a redundant safety relay, TAP Monitor will automatically shut off your kiln if it exceeds a specified temperature – even if your primary relay fails.

TAP Monitor integrates with your kiln to provide remote kiln temperature monitoring to your smartphone.
TAP Monitor integrates with your kiln to provide remote kiln temperature monitoring to your smartphone when installed with a redundant relay, TAP Monitor also provides additional kiln safety.

Introducing TAP Monitor Digital Pyrometer Limit Controller

While previous kiln temperature monitors only added kiln safety shutoff or a temperature readout, TAP Monitor by SDS Industries adds a whole lot more than that!

TAP Monitor is an advanced, user-friendly kiln temperature monitor that gives kiln operators the ability to precisely monitor kiln firing temperatures – remotely! – regardless of their existing kiln control method.

Available as a plug-and-play standalone pyrometer limit controller or as a set of configurable components for DIY installs and oven builds, TAP Monitor gives ceramicists, potters, glass artists, and bladesmiths the ability to:

  • Precisely monitor the temperature of their kiln, oven, or forge via the TAP Kiln Control Mobile App.
  • View digital pyrometric readouts from any manually controlled kiln, including remote readouts via TAP Kiln Control Mobile when TAP Monitor is connected to a local network.
  • Easily add precise, real-time digital temperature readings to their manual kiln or oven.
  • Pair TAP Monitor with their existing automatically controlled kiln for remote monitoring.
  • For added safety, use TAP Monitor as a standalone or safety relay controller.

Explore Kiln Control Solutions by SDS Industries

In addition to the TAP Monitor Digital Pyrometer, the TAP Ecosystem includes a variety of programmable kiln controllers that give artists complete control of their kilns – without complicated controls or clumsy user interfaces. The TAP and TAP II Controllers by SDS Industries provide users the most advanced, precise, and easy-to-use programmable digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven. We invite you to explore our selection of programmable kiln controllers, pyrometers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Shop TAP Monitor Digital Pyrometer for Kilns

Posted on

What Is a Pyrometer? Understanding Pyrometers for Kilns

What is a pyrometer? A pyrometer is a temperature monitoring device for high temperature applications.

What is a pyrometer? A pyrometer is a device that measures high temperatures for applications beyond the range of a mercury thermometer (673° F or 356° C). Pyrometers, also referred to as pyrometric devices, are used to monitor temperature for a wide variety of applications. From kilns, furnaces, heat treat ovens, and industrial processes, to measuring the surface temperatures of distant planets!

Contact vs Non-Contact Pyrometers

Pyrometers can be contact or non-contact. Contact pyrometers, such as pyrometers for kilns, use thermocouples that are in thermal contact with the object or atmosphere. Non-contact pyrometers, on the other hand, use optical systems to measure the radiation of a surface without the need for thermal contact.

Both types of pyrometers have their pros and cons. Contact pyrometers, also known as resistance pyrometers or thermocouple pyrometers, are subject to degradation from heat exposure and are limited by the range of the thermocouple. However, they are highly accurate and usually less expensive.

Non-contact pyrometers, also referred to as optical pyrometers, radiation pyrometers, or infrared pyrometers, have far greater range – both in terms of physical distance as well as maximum temperature. Non-contact pyrometers can measure temperatures exceeding 7232° F or 4000°C – nearly three times higher than most contact pyrometers. Non-contact pyrometers can also measure temperatures of moving objects or objects that cannot be touched. However, they are significantly more expensive and less accurate.

Pyrometers for Kilns

As you can probably imagine from the comparison above, contact pyrometers are generally more suitable for kiln temperature monitoring. Affordability and accuracy, as well as the temperature range of most kiln firing schedules, makes using a thermocouple pyrometer with your kiln a pretty obvious choice!

A Brief History of Pyrometers for Kilns

While the earliest known pyrometer dates back to the “Hindley Pyrometer” in 1732, the first pyrometer for kilns was invented by English potter Josiah Wedgwood in the 1780s. Josiah Wedgwood is an interesting figure in the history of pottery. He was a wildly successful potter, industrialist, and entrepreneur – a savvy marketeer, technological innovator, prominent abolitionist, and fashion tastemaker in 18th century England, possibly the closest thing pottery has had to a ‘rockstar.’

(An interesting aside, the fortune Wedgewood amassed selling his line of pottery to the aristocracy of England and the rest of Europe, including Queen Charlotte of England and Queen Catherine of Russia, helped fund the research of his grandson, Charles Darwin. Yes, that Charles Darwin. Wedgwood was quoted as saying, “Fashion is infinitely superior to merit,” although his pottery was widely considered to possess both due to his dedication to utilizing the latest advancements in technology).

Wedgwood’s pyrometer was an optical pyrometer that was used to visibly compare the color of the clay in the kiln to the color of clay fired at known temperatures (similar in principle to this firing chart!). Later he replaced this early pyrometric technology with using of shrinking clay rings or expanding metal bars to measure the temperature of his kilns.

In 1885, Dr. Herrmann Seger developed the pyrometric cone, another pyrometric device based around a similar principle, which remained the standard in pyrometry for at home kilns all the way up until the invention of digital kiln controllers and digital pyrometers in the 1980s. For industrial kilns and furnaces, the Siemens brothers developed a platinum thermometer that could measure temperatures up to 1832° F or 1000° C in the 1860s through the 1870s.

Alternatively, for higher temperatures, the disappearing filament pyrometer was invented by L. Holborn and F. Kurlbaum in 1901. This was another optical pyrometric device that worked by adjusting current through a filament until it matched the color (and thus temperature) of an incandescent object. Evolutions in disappearing filament and brightness pyrometers continued throughout the 20th century.

Modern Digital Pyrometers for Kilns

In the 1980s, the world became digital, and the modern thermocouple pyrometer was born. Digital pyrometers for kilns use thermocouples that attach to a temperature sensor to precisely monitor kiln temperature.

While digital kiln controllers can be used to monitor kiln temperature, a dedicated digital pyrometer adds additional capabilities. For instance, you can use a digital pyrometer to add digital temperature monitoring to a manual kiln or use it in addition to a programmable digital kiln controller to act as a safety redundancy device to provide automatic safety shutoff in case of relay failure.

TAP Monitor is an advanced digital pyrometer that brings precise temperature measuring and remote monitoring to any kiln or heat treat oven.
TAP Monitor is an advanced digital pyrometer that brings precise temperature measuring, remote monitoring, and safety redundancy to any manual or automatic kiln or heat treat oven.

The TAP Monitor Digital Pyrometer Limit Controller

The latest evolution in digital pyrometers for kilns is the TAP Monitor, which is now available for preorder! The TAP Monitor is an advanced, user-friendly limit controller and digital pyrometer that gives kiln operators the ability to precisely monitor kiln temperature – remotely! – regardless of their existing kiln control method.

Available as a plug-and-play standalone pyrometer limit controller or as a set of configurable components for DIY installs and oven builds, TAP Monitor gives ceramicists, potters, glass artists, and bladesmiths the ability to:

  • Precisely monitor the temperature of their kiln, oven, or forge via the TAP Kiln Control Mobile App.
  • View digital pyrometric readouts from any manually controlled kiln, including remote readouts via TAP Kiln Control Mobile when TAP Monitor is connected to a local network with internet access.
  • Easily add precise, real-time digital temperature readings to their manual kiln or oven.
  • Pair TAP Monitor with their existing automatically controlled kiln for remote monitoring.
  • For added safety, use TAP Monitor as a standalone and safety relay controller. 

Explore Kiln Control Solutions by SDS Industries

In addition to the TAP Monitor Digital Pyrometer, the TAP Ecosystem includes a variety of programmable kiln controllers that give artists complete control of their kilns – without complicated controls or clumsy user interfaces. The TAP and TAP II Controllers by SDS Industries provide users the most advanced, precise, and easy-to-use programmable digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of programmable kiln controllers, pyrometers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Shop TAP Monitor Digital Pyrometer for Kilns

 

Posted on

How to Easily Track Your Electric Kiln Firing Cost

Tracking electric kiln firing costs on a kiln firing cost calculator

Did you know that you can easily program your TAP Controller to track your electric kiln firing cost? And with the latest update to the TAP Kiln Control Mobile App, we’ve made the kiln firing cost calculator function free for all users!

Why is this important?

There are several benefits to being able to accurately track your electric kiln firing cost. If you sell (or plan on selling) your work, knowing kiln costs for each firing schedule, along with materials and labor costs, allows you to accurately price your work. Additionally, knowing your electric kiln firing cost allows you to accurately track cost growth as utility rates rise.

But even if you don’t sell your work, the kiln firing cost calculator function can help you gain insight into whether your kiln is operating as effectively as it did when it was new, helping you stay ahead of possible kiln maintenance needs. Plus, with how easy it is to program cost settings on your TAP Controller, it’s just cool information to know!

How to Use the Kiln Firing Cost Calculator on Your TAP Controller

Setting up your TAP Controller to track your electric kiln firing cost is super easy. For the original TAP Controller, you can input cost settings right from your controller screen or via the TAP Kiln Control Mobile App. For the TAP II Controller, as well as the other kiln controllers in the TAP Ecosystem, you will set up your kiln firing costs via the TAP Kiln Control Mobile App, so you can skip ahead to the next section for instructions!

Steps for Programming Kiln Cost Settings on the Controller UI

TAP Kiln Controllers have a kiln firing cost calculator for tracking your electric kiln firing cost.

  1. From the Home Screen, go to Menu > Settings > Cost.
  2. Enter your kiln’s power rating in watts in the field for ‘Kiln Power.’ If you’re unsure of your kiln’s power rating, you can usually find it on the kiln’s data plate or in your kiln’s user manual. If your kiln’s power rating is in kilowatts, just multiply that number by 1000 to convert the power rating into watts.So, for instance, if your kiln was rated for 2.16 kW, you’d multiply that by 1000, and enter 2160 in the field for ‘Kiln Power.’
  3. Enter your utility provider’s cost per kilowatt hour in the ‘Cost per kWh’ field. You can find this information on your latest electric bill or on the website for your electric utility provider. In the example below, we’ve highlighted the Cost Per kWh (so, for this example, you would enter $0.041 under ‘Cost per kWh):Once you’ve input this information, your TAP Controller will automatically calculate your electric kiln firing cost – so you can ditch the pencil, notebooks, timers, and calculators!

A sample electric bill helping users find the information they need to calculate their kiln firing costs.

How to Setup Electric Kiln Firing Cost Tracking on the TAP Kiln Control Mobile App

You can also program cost settings for the TAP or TAP II Controller (as well as our upcoming kiln temp controller options) on the TAP Kiln Control Mobile App – and track your electric kiln firing costs on the go!

  1. In the TAP Kiln Control Mobile App, select your kiln from the Summary Screen.
  2. Press Settin
    gs on the bottom center of your screen.
  3. Scroll down to Cost. Here you will find the field to inp
  4. ut ‘Cost per kWh’ and ‘Kiln Power’ (refer to Steps 2 & 3 from the previous section):

The TAP Kiln Control Mobile App allows you to input date from your kiln and your electric bill to track your electric kiln firing cost.

You can download the latest version of the TAP Kiln Control Mobile App, which makes this feature free for all TAP users on the App Store (for iOS) or the Google Play Store (for Android).

As you know, electric kiln firing costs aren’t the only cost of owning (and maintaining a kiln). For additional information about the cost of kiln ownership – from purchase and installation to maintenance costs – check out our definitive guide on kiln costs!

Explore Programmable Digital Kiln Controllers by SDS Industries

When it comes to providing features that make life easier for artists, electric kiln firing cost tracking is just scratching the surface!

The TAP and TAP II Controllers by SDS Industries provide users the most advanced, precise, and easy-to-use programmable digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of programmable kiln controllers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Download the TAP Kiln Control Mobile App for remote kiln control from your smartphone or tablet.

Posted on

How Much Do Kilns Cost? The True Costs of Owning a Kiln

Description of kiln costs - from purchase and shipping to installation, operation, and maintenance.

For most artists, purchasing a kiln is a pretty big investment. Newer artists, especially, will probably have a lot of questions about what they’re getting into! How much do kilns cost? What about installation and kiln maintenance? Are kilns safe? What type of kiln is right for me? What kind of controller should I use for my kiln?

Don’t worry, we’ve got you covered! You can find our guides on kiln maintenance, kiln safety, types of kilns, and kiln control methods below. And by the end of this article, you’ll have a complete understanding of kiln costs!

Note: For the sake of this article, we’ll be primarily focusing on kiln costs for electric kilns, which are the most common kilns for the hobby kiln and studio kiln market. Gas kilns are typically more expensive, ranging from $3,000 on the extreme low-end to $30,000+ for a high-capacity gas kiln and have their own unique operating and installation costs.

Understanding Kiln Costs

When people think about kiln costs, a lot of the time they only think about the upfront cost of purchasing their kilns. While we’ll be covering purchase costs in depth, there are additional costs to consider. These include installation costs, kiln maintenance costs, material costs, as well as firing costs.

For the hobbyist, understanding these costs will help avoid unforeseen expenses. It will also help determine the most suitable type of kiln and possibly save some money! But for the professional artist, accurately tracking kilns costs can help make sure they’re pricing their wares correctly.

The Cost of Buying a Kiln

For most artists, purchasing a kiln is by far the most expensive part of kiln ownership. Kiln costs vary tremendously, ranging from around $700 for compact kilns to $20,000+ for large, higher powered, industrial grade kilns. There is also a robust used kiln market on Craigslist, eBay, Facebook Marketplace, and other online markets, where pre-owned kilns range from $275 to $3,000+ dollars.

Factors that influence kiln costs include:

  • Size: Generally speaking, the bigger the kiln, the more expensive – both at the time of purchase and in terms of potential installation, maintenance, and power costs.
  • Power Rating: Larger kilns and hotter kilns typically require more power and are generally more expensive.
  • Maximum Temperature: Generally, kilns with a higher maximum temperature are more expensive than comparable kilns with lower maximum temperatures.
  • Materials Fired: Glass kilns, ceramic kilns, knife kilns, and metal clay kilns (for jewelry) have different price ranges (which we’ll be covering more in-depth below).
  • Temperature Controller Method: The type of kiln controller that comes included with your kiln will impact its price by up to several hundred dollars – but your controller will have a major impact on your kiln firing experience and the functionality of your kiln.
  • Shipping Costs: As a larger item, shipping costs for kilns can add a substantial amount to your purchase price. When comparing prices between kiln suppliers, check to see whether shipping costs are included with the purchase of your kiln.

Whew, that may seem like a lot of factors to keep in mind! Don’t worry, we’ll be covering each of these considerations more in-depth. To help narrow your focus when purchasing a new kiln, it’s important to ask yourself the following questions:

  • How will I be using my kiln? What types of kiln firing schedules will I need to be able to execute?
  • Based on the media and techniques I use, what kiln firing temperatures and element placement will I need for my projects?
  • How big does my kiln need to be? How much space do I have to install the kiln at my home or studio?

The more specifically you can answer those types of questions, the easier it will be to determine which features you need to shop for and the kiln costs you should budget for.

Kiln Size Price Ranges

When it comes to buying a kiln, how big does your kiln need to be? Well, that depends…how big are the projects you’ll be firing? If you only need your kiln for slumping glass or firing jewelry or other small objects, chances are you’ll be able to save a lot of money on upfront costs and installation by purchasing a compact kiln.

However, if you’re firing large ceramic pieces – or firing multiple projects at a time – you’ll probably need to spring for a larger kiln.

Below are the average and median prices for kilns based on size (kiln prices throughout this article are based on aggregate price data from Kiln Frog).*

  • Compact Kilns: Under 15”
      • Price Range: $924.00 – $3318.54
      • Average Price: $1594.83
      • Median Price: $1474.16
  • Medium Kilns: 13” – 18”
      • Price Range: $916.00 – $4623.86
      • Average Price: $2028.56
      • Median Price: $1921.81
  • Large Kilns: 17” – 24”
      • Price Range: $1558.00 – $6889.54
      • Average Price: $3240.21
      • Median Price: $3139.00
  • X-Large Kilns: Over 24”
      • Price Range: $2416.00 – $25328.55
      • Average Price: $6669.63
      • Median Price: $4582.80

As you can see, the size of the kiln makes a big difference in price!

*Price data in this article includes current promotions – prices may vary.

Kiln Costs Based on Power Rating

Another factor that can influence kiln costs – for purchase, installation, and your electric bill – is the power rating of your kiln. When it comes to power rating, there are three ratings you need to understand: voltage, amperage, and wattage.

Voltage is the electric potential of a circuit. Comparing electricity to plumbing, voltage could be considered the pressure in a pipe. In the U.S., kilns typically come in two different voltage configurations: 120V and 240V, which correspond with the electric grid. 120V kilns are typically less expensive and match the voltage of a standard residential wall outlet; however, kilns exceeding 15 amps will need to be installed on a dedicated circuit.

A 240V kiln, on the other hand, needs a special wall outlet (other large appliances, such as wall ovens, AC units, and dryers use 240V outlets). Chances are, you will need the help of an electrician to run a new outlet in order to install your kiln. According to HomeGuide, this will cost anywhere from $250 – $800.

Amperage is the units of electrical current in a circuit. Extending the plumbing analogy, current is similar to the capacity of a pipe: the wider the pipe, the more water that flows. Kilns range from 13 amps to 80 amps. 120V kilns typically only go up to 30 amps, while 240V kilns can range anywhere from 30 amps to 80. At 48 amps or higher, a kiln will have to be wired directly into your power supply – another additional expense!

Watts measure the rate of power flow, calculated by multiplying voltage by amperage. Smaller 120V kilns typically draw between 1500 and 1800 watts, while a large 240V kiln can draw up to 11000 watts. TAP Kiln Controllers by SDS Industries allow you to enter your kiln’s watt rating, as well as the cost per kilowatt hour from your electric bill to automatically calculate your cost per firing.

The kiln costs tracking feature on TAP Kiln Controllers allows artists to automatically track how much they spend per fire.
The TAP Kiln Controller by SDS Industries allows artists to easily track their cost per fire on their electric kiln.

Kiln Costs by Maximum Temperature

Different kilns are capable of reaching different maximum temperatures. Generally, the hotter the kiln, the higher the kiln costs! If you need to fire Cone 14 porcelain, expect to spend more money than if you only need to fire Cone 06 ceramics. Reviewing these firing schedules for glass, ceramic, and metal heat treat can help you figure out which temperatures you’ll need your kiln to be able to reach based on the media and techniques you use.

Kiln Costs by Materials Fired

Speaking of media, when shopping for a new kiln, you’ll find that there are different kilns designed specifically for glass, ceramics, metal heat treat (for objects such as blades and knives), and metal clay (for jewelry and small metal trinkets). How do the materials you fire impact kiln costs?

Kilns have different dimensions and maximum temperatures based on the materials they’re designed to fire. Generally, metal clay kilns will be smaller than glass kilns, which will be smaller than knife kilns. Ceramic kilns tend to be larger and cylindrical, since you can stack pottery during fire. You can expect the price of the kiln to scale accordingly.

Additionally, ceramic kilns and heat treat kilns will typically need to be capable of reaching higher temperatures than metal clay kilns or glass kilns.

Broadly speaking, metal clay kilns will be the least expensive, and ceramic kilns will be the most expensive. Glass kilns and metal heat treat ovens often fall somewhere in between.

Temperature Controller Costs

Finally, an extremely important consideration when buying a kiln is deciding which brand and model of kiln controller to purchase with your kiln. After all, the kiln controller will be your primary interface with your kiln and will largely determine your user experience. Your kiln control method will determine the accuracy of your kiln firing, as well as what you can program the kiln to do.

Upgrading to a fully featured touchscreen programmable digital kiln controller will add a few hundred dollars to your kiln costs compared to a rudimentary 3-key model. Is it worth it?

In our opinion, yes. Definitively. An advanced, easy-to-use kiln controller like the TAP Kiln Controller gives you the ability to:

  • Easily navigate your controller and manage your firing schedules with just a few finger presses.
  • Name, save, and edit unlimited firing schedules with an unlimited number of steps per schedule.
  • Easily find and select the right schedule with alpha-numeric, full text displays.
  • Integrate your controller with the TAP Kiln Control Mobile App so that you can remotely monitor your kiln and create, modify, and execute firing schedules from your mobile device.
  • Enjoy peace-of-mind with push notification alerts and alarms to keep you informed of your firing status, notify you when it’s time for preventative maintenance, or let you know when unexpected conditions occur.

Additionally, SDS Industries is working on a lineup of more cost-accessible controller options that contain many of the advanced functions of TAP at a lower price point, with all kiln controller inputs performed via your smartphone.

Read our side-by-side kiln controller manufacturer comparison to compare the features of TAP against what you get with lower-priced controller options.

Additional Kiln Costs

In addition to kiln costs at point of purchase and installation, there are also longer-term costs to keep in mind.

We mentioned installation costs earlier. You should plan on budgeting up to $800 if you will need the help of an electrician in installing your kiln. Additionally, if you’re purchasing a ceramic kiln, you may need to buy and install a ventilation system which can run another $200 to upwards of $800.

For kiln maintenance, you will have to replace thermocouples, elements, and mechanical relays at regular intervals. Depending on how frequently you use your kiln and the temperatures you fire to, you should plan on budgeting at least $100 to $200 dollars every year or two to replace these components.

And, finally, you will have to budget for materials. Material costs can vary greatly per artist, but you should plan accordingly!

Conclusion

There you have it! Hopefully, this article has given you a full understanding of the true cost of owning a kiln. However, you should look at kiln costs as a long-term investment. If you take care of your kiln, it could last you for decades and give you countless hours of enjoyment and self-expression – so it’s hard to put a price tag on that! But it’s also important to know what you’re getting into and budget accordingly.

Explore Programmable Digital Kiln Controllers by SDS Industries

If you’re buying a new kiln, you’ll want to make sure it’s coming with the right controller. Ask your kiln supplier about TAP! The TAP and TAP II Controllers by SDS Industries provide users the most advanced, precise, and easy-to-use programmable digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of programmable kiln controllers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Shop the best kiln controllers - TAP by SDS Industries.

Posted on

Kiln Maintenance & How to Care for Your TAP Controller

Kiln maintenance helps prolong the lifespan of your kiln and its components.

Owning a kiln is a little bit like owning a car. With mindful operation and a little bit of routine maintenance, your kiln should last for decades! Proper kiln maintenance ensures your kiln remains safe and operational during that time.

The good news is that kiln maintenance is much simpler (and less expensive!) than maintaining your car. While a car has a gazillion different parts that will eventually need to be replaced, kilns have far fewer points of potential failure. And while it can be a good idea to occasionally enlist the help of an electrician or a kiln engineer (especially during installation), most kiln operators will be able to perform regular kiln maintenance by themselves!

Better yet, today’s programmable digital kiln controllers like TAP Controllers by SDS Industries include advanced diagnostics features and preventative maintenance alerts, so that you know when it’s time to replace kiln elements, thermocouples, and relays. That way, you’re able to maintain optimal performance without having to worry about your kiln conking out on you mid-project!

Routine Maintenance: Component Replacement

Just like with cars, there are certain kiln components that will wear down over time and will need to be replaced on a regular basis, so we’ll start with those first. These components include:

  • Thermocouples: Thermocouples – the probe that measures the temperature of your kiln – are regularly subjected to high temperatures. Over time, thermocouples become corroded and start crumbling at the tip and will no longer be able to accurately record temperature. You’ll need to replace your thermocouples on a regular basis – typically every 30 to 50 firings for Type K thermocouples.
  • Kiln Elements: Elements are the metal coils that line the inside of your kiln and heat up when they receive electric current. Over time, kiln elements become corroded and their resistance increases – meaning that they begin to become less efficient and require more electric current to heat your kiln. The lifespan of kiln elements can range anywhere from 1 to 5 years. Their lifespan depends largely on the type of kiln you’re using, the temperatures you regularly fire to, as well as firing frequency and duration.
  • Mechanical Kiln Relays: Kiln relays regulate the power to the elements of your kiln, allowing them to heat up or cool down. Mechanical relays, which come standard on most kilns, are subject to failure after around 200,000 cycles and will need to be replaced every 12-24 months. Alternatively, investing in mercury or solid-state relays can reduce kiln maintenance costs, since those relays last much, much longer. Mercury relays last around 5 million cycles and will only need to be replaced every 15-20 years. Finally, solid-state relays don’t have any moving parts and can last over 1000 years (TAP Kiln Controllers are compatible with all three relay types!).

Replacing these components is an inevitable part of kiln maintenance. TAP Kiln Controllers calculate health and life expectancy for each of these components based on user defined thresholds, letting you know when it’s time to replace each component to maintain optimal kiln performance.

Other kiln components that may require replacement include kiln bricks, kiln lids, electrical wires, and kiln controllers. However, there are steps you can take to monitor and prolong the lifespan for all of these components:

  • For kiln bricks, be careful when moving your kiln or when placing or removing objects from your kiln. Regularly visually inspect the interior of your kiln. Kiln bricks will need to be replaced when they’re no longer able to properly support kiln elements or when significant chunks of kiln bricks are missing affecting the thermal efficiency of your kiln.
  • For kiln lids, be mindful when opening and closing your kiln to prevent denting or damaging the lid. Do not lean on your kiln or use it as a shelf for storing objects.
  • Regularly inspect electrical wires for discoloration, brittleness, or corrosion. Immediately replace these components if necessary.
  • For kiln controllers, make sure they are properly installed and regularly keep the screen clean and free of debris. We’ll be going more in-depth on how to care for your TAP Controller further below!

TAP Kiln Controllers give users a detailed error log that helps them identify component failure. For a breakdown of error messages and troubleshooting steps, check out p. 12 of the TAP II Controller User Manual.

Maintenance tip for at home kilns

Kiln Maintenance: Installation

Ben Franklin once said, “An ounce of prevention is worth a pound of cure.” This is definitely true when it comes to kiln maintenance. Proper installation will prevent a ton of potential problems later down the road. Below are a few principles for kiln installation that will prolong the life of your kiln:

  • Select a space with adequate clearance and proper surfaces. Heat is a common cause of kiln component failure (or worse!). When installing your kiln, make sure your kiln has at at least 18” of clearance from non-combustible surfaces and 36” from combustible surfaces. Make sure the kiln is installed on a level surface that’s non-combustible and able to withstand high temperatures.
  • Install your kiln in a dry area. Water and electricity don’t mix! Installing your kiln in a dry area prevents shorts and surges and protects your kiln from corrosion, which will significantly reduce the life of your at home kiln components.
  • Follow manufacturer guidelines for installation. When you purchase your kiln, you should receive manufacturer guidelines for installation and kiln safety. Make sure to adhere to these closely when installing your kiln. If you purchase a used kiln, contact the manufacturer for installation guidelines.
  • Get any electric work done by a qualified electrician. At home kilns, especially larger ones, utilize a lot of electricity, so it’s important to make sure that you use a dedicated circuit with a properly rated power outlet and never use an extension cord. Enlisting the help of a certified electrician during installation helps reduce the likelihood of kiln maintenance problems down the road.
  • Make sure thermocouples are properly installed. Thermocouples help your automatic kiln controller precisely regulate the temperature of your kiln. However, thermocouples will only give you accurate temperature readings if they’re properly installed! Thermocouples should be inserted an inch or two into the interior or your kiln and should have at least 1″ clearance from any shelves, components, or any materials you place inside your kiln.
  • For DIY kiln builds, make sure relays are properly installed. Kiln relays ensure the safety of your kiln by cutting power to the elements if the kiln gets too hot. For DIY kiln or oven builds, it’s important to choose the right type of relay; for instance, solid-state and mercury relays will have far more longevity and reliability than mechanical relays. But it’s even more important to make sure that relays are properly rated and installed and that you utilize a safety relay to add redundancy in case one relay fails.
  • Don’t store your kiln outside. Since indoor kiln installation for ceramics and glazing requires proper ventilation, it might be tempting to keep your kiln outside. We strongly, strongly advise against that. Exposure to the elements will reduce the lifespan of your kiln and all of its components.

Kiln Maintenance Tips Before, During, and After Firing

While proper installation and regularly replacing necessary components can prevent a host of kiln maintenance issues down the line, there are also steps you can take before, during, and after firing to prolong the life of your kiln. Below is a list of tips for kiln care and maintenance!

  • Regularly clean your kiln. Debris, dust, and glazes in the interior of your kiln can reduce element efficiency, ultimately reducing their lifespan. Carefully dusting around the element grooves and regularly vacuuming your kiln’s interior helps prevent this. Just be careful not to damage the elements or the surrounding brick! If melted glaze gets on your kiln brick, make sure to gently scrape it off to avoid it absorbing into the kiln brick. You can also use kiln wash to minimize potential damage from dripping glaze (just make sure not to get it on the kiln’s elements!). Additionally, you should only clean your kiln when it is powered off to avoid causing electrostatic discharge if you accidentally hit the thermocouple and other mishaps.
  • Keep your lid closed between firings. Leaving your kiln’s lid open leaves it susceptible to dust, debris, or wildlife getting in (yikes!). Make sure to keep your lid closed when you’re not using the kiln.
  • Do not lean on your kiln. Leaning on your kiln can cause dents or stress fractures, reducing its efficiency.
  • Don’t use your kiln for storage. Storing items in your kiln can easily damage the bricks or elements of your kiln.
  • Be careful opening and closing your kiln. Be gentle opening and closing the lid of your kiln to avoid damaging the lid or the top-edge of your kiln.
  • Don’t open the kiln for prolonged periods when it’s still hot. While it may be necessary to occasionally open your kiln to monitor the status of your work during firing, prolonged exposure to abrupt changes in temperature can cause cracks and fractures in your kiln brick.
  • Regularly inspect kiln elements. Regularly visually inspect your kiln’s elements for debris buildup or corrosion. Occasionally, kiln elements may become dislodged from the grooves in the brickwork and may need to be repositioned. Additionally, you can use a multimeter to test their resistance. Once they exceed 10% of the recommended resistance in your kiln’s user manual, it’s time for them to be replaced.
  • Invest in a safety relay controller. The biggest threat to your kiln’s lifespan (as well as your safety and the welfare of your household and personal property) is too much temperature. Occasionally relays fail. If they fail in the open position, your kiln will keep heating up indefinitely. This is no bueno! Investing in a redundant safety relay controller like the TAP Monitor ensures that your kiln safely shuts off in case of relay failure.

Caring for Your TAP Controller

TAP Kiln Controllers are carefully manufactured from high-quality components and backed by an industry leading 3-year warranty. However, like any advanced electronic device, they are subject to failure, wear and tear, and their lifespan can be prolonged by proper care. Below are tips for caring for your TAP Controller:

  • Make sure your controller is properly installed. You can find tips for kiln controller installation for DIY builds here, but if you have any questions we encourage you to contact us.
  • Regularly clean your screen to keep it free from any dust or debris.
  • Avoid wearing jewelry or watch while using your TAP Controller, as these can result in scratches on the screen.
  • Again, we cannot stress this enough, do not store your kiln or your controller outdoors.
  • Regularly review diagnostic errors so that you can spot and troubleshoot potential errors with controller output.
  • Make sure your controller is updated to the latest software. If you’re connected to WiFi, updates will be downloaded automatically and you will be notified via pop-up. Simply follow the on-screen instructions. But you can find instructions for manually updating kiln controller software for your TAP Controller here.

Additionally, SDS Industries is always working to improve our kiln controllers and provide users with new features that improve their kiln firing experience. We’re currently working on an automated device monitoring software for TAP Controllers that monitors device performance and health. By monitoring various controller metrics, the software will be able to detect potential controller degradation so that we can be proactive and inform you if your controller needs repairs.

Maintenance tips and cleaning instructions for TAP Kiln Controllers by SDS Industries.

Tips for Cleaning Your TAP Controller

TAP Kiln Controllers use a resistive touchscreen for user inputs. As mentioned earlier, to maintain optimal performance, you should regularly clean your TAP Controller to ensure it’s free of dust, debris, smudges, and fingerprints. Below are a couple dos and don’ts for cleaning your TAP Controller:

  • Before cleaning the display, use a dry, lint-free microfiber cloth to gently wipe away any dust from the touchscreen.
  • Use distilled water to dampen the microfiber cloth to gently clean the touchscreen display.
  • Do not use the following cleaning agents: tap water, ammonia, acetone, ethyl alcohol, methyl chloride, or ethyl acid, as these can cause damage to your screen.

Explore Programmable Digital Kiln Controllers by SDS Industries

The TAP and TAP II Controllers by SDS Industries provide users the most advanced, precise, and easy-to-use programmable digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of programmable kiln controllers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Shop kiln controllers for electric kilns by SDS Industries.

Posted on

Kiln Firing Chart for Pottery and Ceramics [Infographic]

Kiln firing chart blog header

When it comes to firing ceramics, different types of clays and glazes are rated for different temperatures. A kiln firing chart, also known as a cone firing chart, is a useful tool for understanding the effects of temperature on different types of clays and glazes, as well as determining what firing schedule setpoints should be used depending on the cone rating of the media you’re firing.

What Temperature Is Pottery Fired At? Understanding Different Types of Ceramics

What temperature is pottery fired at? Well, that depends. There a three main types of clay that are used to make pottery: earthenware, stoneware, and porcelain. Each of these has different temperature requirements, as well as different properties once fired.

1. Earthenware

Earthenware clay is the most common type of clay used in ceramic firing today. Earthenware is softer than the other types of clay, making it easier to work with and more forgiving. Earthenware also has the lowest firing temperature requirements, which is why it was the first type of clay used to make pottery during the early stages of kiln history.

A collection of fired earthenware pottery to demonstrate the qualities of fired earthenware
Fired earthenware is porous and relatively soft. Earthenware ranges from white and gray hues to browns, oranges, and reds.

 

Firing Temperature

Earthenware clay typically reaches maturity (or optimum hardness) between 1745° F and 2012° F, although some low-firing earthenware clays can be fired in temperatures as low as 1200° F.

Cone Rating

Earthenware is what’s known as a “low fire” clay. Earthenware clay can be fired from Cone 015 up to Cone 1, but Cone 04 is the average.

Physical Properties

Since earthenware is fired at lower temperatures, it typically remains porous, relatively soft (you can scratch it with a knife!), and still absorbs water. Glazes are often required to make earthenware harder and watertight.

2. Stoneware

Stoneware is a “mid-range” or “high fire” clay that requires higher firing temperatures and a longer firing schedule than earthenware. Once it has been fired, stoneware is hard, dense, and rocklike – hence the name!

A collection of fired stoneware ceramics, demonstrating its hard, rocklike texture
Named for its hard, rock-like texture, fired stoneware is often gray or brown.

 

Firing Temperature

Stoneware reaches maturity between 2000° F and 2400° F – hotter than lava!

Cone Rating

Stoneware is typically fired between Cone 2 all the way up to Cone 12, with Cones 7 and 10 being the most common for mid-range stoneware and high fire stoneware, respectively.

Physical Properties

Since stoneware is fired at higher temperatures, it has time to fully vitrify, or form a glassy, nonporous bond on its surface. Finished stoneware is durable, hard, and nonporous. Unlike earthenware, stoneware is waterproof once fired even without the use of glazes.

3. Porcelain

Originating in China in 1600 BC, porcelain is a “high fire” clay that produces extremely hard, shiny, often white or translucent ceramics. Also known as kaolin clay (named after Kao-ling hill in China, where it was mined for centuries), raw porcelain is extremely dense and difficult to work. Often, porcelain is mixed with other types of clay to improve its workability.

A collection of fired porcelain ceramics, demonstrating its hard, glasslike white exterior
Fired porcelain is hard, smooth, and glasslike – notable for its white or translucent color

 

Firing Temperature

Porcelain typically reaches maturity between 2381° F and 2455° F – however, pure kaolin reaches maturity at 3272° F!

Cone Rating

Porcelain clay is fired between Cone 10 and Cone 13.

Physical Properties

Once fired, porcelain is extremely hard and fully vitrified, making it watertight and non-absorbent. Porcelain is noted for its distinct white color.

Understanding Firing Cone Ratings

As we mentioned earlier, different ceramic materials and glazes have a cone rating. Firing cones, or pyrometric cones, are a simple pyrometric device that indicate kiln temperature. Firing cones melt when exposed to a certain temperature for a prolonged period of time. Different ceramics and glazes are given a cone rating to indicate the temperatures at which they’ll reach maturity.

Firing cones range from 022 to 14, with 022 being the lowest temperature and 14 being the highest. As you’ll see on the kiln firing chart below, when a firing cone rating has a ‘0’ in front of it, a lower number indicates a higher fire temperature.

However, for firing cones without a ‘0’ in front of their rating, higher numbers indicate higher firing temperatures.

Kiln Firing Chart [Infographic]

In the kiln firing chart below, you’ll be able to see which temperatures correspond with various cone ratings and materials. The color gradient indicates the incandescence of the kiln at various temperatures, and the column to right indicates how the physical properties of ceramic changes at each temperature.

A pottery kiln firing chart, with temperature labels for each cones as well as insights for what changes occur in the clay at various temperatures.

Download PDF!

Reach the Right Setpoints on Your Kiln Firing Chart with Ease and Precision

The TAP and TAP II Controllers by SDS Industries are the most advanced, precise, and easy-to-use pottery kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Controller Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven to allow you to easily manage and execute your kiln firing schedules.

We invite you to explore our selection of digital kiln controller, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP-Controlled Kilns and Heat Treat Ovens through one of the following distributors:

CTA to shop pages for pottery kiln temperature controllers.

 

Posted on

Understanding Kiln Firing Schedules for Glass, Ceramics, Pottery, and Heat Treat

Kiln firing schedules for glass, ceramics, pottery, and heat treat

The primary function of a kiln controller is to help users input (and successfully execute!) their kiln firing schedules…but what is a kiln firing schedule? Below, we’ll be helping you understand kiln firing schedules, as well as how firing schedules differ for materials such as glass, ceramic, pottery, and metal heat treat!

Definition of Kiln Firing Schedules

A kiln firing schedule is a progression of steps, made up of temperature changes over specific time intervals, that a kiln moves through during a firing. Each step of a kiln firing schedule is made up of four components:

  • Step #: Also known as a ‘segment,’ step # represents the order in which the steps of the schedule occur.
  • Ramp Rate: Measured in degrees per hour, the ramp rate is the speed at which the kiln is heated up or cooled down.
  • Setpoint: Measured in degrees, the setpoint is the desired temperature the kiln reaches during each step.
  • Hold Time: Also, known as a ‘soak,’ hold time is the length of time (defined in days, hours, or minutes) the kiln stays at a specific setpoint before advancing.

Each of these components determines the properties of the finished ware once the firing schedule reaches completion. Even extremely minor variances in adhering to kiln firing schedules can have a major impact on the finished result, so it’s important to accurately input firing schedules into your kiln controller and to utilize kiln controllers that are able to automatically execute kiln firing schedules with extreme precision.

Example of a Kiln Firing Schedule

Kiln firing schedules, sometimes colloquially referred to as programs or firing schedules, can best be described as the road map the controller uses to execute a firing. While kiln firing schedules can string together as many steps as necessary to achieve the desired firing result, below we’ll be looking at an example of a three-step firing schedule:

Example of a 3-step kiln firing schedule in order to illustrate the format and various components of firing schedules

Assuming the kiln starts at room temperature, or 70° F, the example schedule shown above will result in a firing that takes 5 hours and 24 minutes to complete. Below is a visual graph representing the firing profile of this schedule:

A 3-step kiln firing profile plotted as a line graph

In this graph, we can see that the kiln follows a 500 degree-per-hour ramp rate from time 0 (when the kiln was started) to 950 degrees (the first setpoint). Once the setpoint is achieved, the controller regulates the temperature to keep the kiln at 950° for 30 minutes.

Once the hold time from the first step is completed, the kiln advances at a rate of 1200 degrees-per-hour to a setpoint of 1425° and holds there for 20 minutes.

Finally, the kiln moves to step three, cooling at a rate of 300 degrees-per-hour down to a setpoint of 700°. Because the hold time at Step #3 is zero, the kiln firing schedule is now complete!

See our article on Alerts and Alarms so you can be notified when your kiln firing schedule reaches certain firing points! 

Ramp/Hold vs Time-to Temp Schedules

Kiln firing schedules can also be expressed in different formats. The example above is the common Ramp/Hold format, which can also be described as a Ramp/Soak or Ramp/Dwell schedule. This is the most common kiln firing schedule format, and it is also the format that is supported by TAP Kiln Controllers.

However, kiln firing schedules can also be written in a Time-to-Temp format, which contains all of the same information but prioritizes the timing of the firing as opposed to the temperature of the firing.

When generating a Time-to-Temp schedule, you are, in effect, saying “I want to be at 950 degrees in 1 hour and 45 minutes.” At that point, the controller is responsible for converting the defined “Time-to-Temp” into a usable Ramp Rate. By saying we want to be at 950° in 1 hour and 45 minutes, and assuming we’re starting from 70°, we’ve essentially created a firing schedule with an implied ramp rate of 500 degrees-per-hour.

NOTE: Some controllers that use Time-to-Temp format do not report accurate ramp rate, which can affect outcomes of the firing schedule. For instance, a Time-to-Temp controller might report that your kiln went from 100° to 1250° in one minute, because that was what it was programmed to do, even though achieving that level of temperature change over that time interval simply isn’t possible.

Below is the exact same kiln firing schedule from before written in a Time-to-Temp format:

A kiln firing schedule written in Time-to-Temp format

The firing graph for both formats would look exactly the same – and executing either format would yield the same outcome once the firing schedule reaches completion (assuming the controller was capable of converting the Time-to-Temp into an accurate ramp rate). The only difference is how the kiln firing schedule is expressed. What was defined in three steps in the Ramp/Hold format requires five steps in the Time-to-Temp format, despite yielding the same firing profile.

What Factors Does a Kiln Firing Schedule Depend On?

Kiln firing schedules are dependent on the material/media being fired, as well as the physical capabilities of the kiln. There is no one-size-fits-all approach to kiln firing schedules, as the material within the kiln will require its own unique schedule to achieve optimal results. Later in the article, we’ll be looking at examples of firing schedules for glasswork, firing ceramics, and metal heat treat.

Limitations of Kiln Firing Schedules

Now that you know the components of a kiln firing schedule, you should also understand the limitations. The physical capabilities of the kiln dictate certain physical boundaries that cannot be overcome. The material of the kiln, chamber size, power rating, and thermocouple gauge all contribute to the kiln’s demonstrated performance.

As kilns approach higher temperatures, their ability to heat at defined ramp rates begins to fall off. A kiln that can heat at a ramp rate of 3600 degrees-per-hour while at 200° will likely be unable to generate the same ramp rate at 1500°. This is a result of the kiln material and power rating.

Thermocouples are used to read the temperature inside a kiln chamber and communicate that temperature to the kiln controller. A kiln with an 8-gauge thermocouple will respond much slower to temperature input than a 20-gauge thermocouple. This can result in overshoot at low setpoints as the thermocouple needs time to “catch-up” to the heat that has been applied to the kiln.

Kiln Firing Schedules for Glass

While the kiln firing schedule example above was hypothetical, in this section we’ll explore actual kiln firing schedules for different types of glasswork techniques.

Please Note: Each of these schedules is for 90 COE glass. Additionally, each firing schedule will have to be adjusted according to your specific kiln, the size of your project, as well as the type of glass you’re using – some experimentation will be required, so please just use these as a general guideline.

For additional in-depth technical information about using your kiln to fire glass, please visit https://www.bullseyeglass.com/index-of-articles/.

Full Fuse Firing Schedule

A full fuse is when you use heat and time to combine two or more layers of glass to form one single solid piece of glass. The layers of glass fuse together – hence the name! Below is a full fuse firing schedule for projects that are smaller than 12”.

A full fuse firing schedule for 90 COE glass

  1. 400°F/Hr to 1250°F – hold 30 minutes.
  2. 600°F/Hr to 1490°F – hold 10 minutes.
  3. AFAP°F/Hr to 900°F – hold 30 minutes.
  4. 150°F/Hr to 700°F – hold 0 minutes.
  5. AFAP°F/Hr to 70°F – hold 0 minutes.

You can find temperature guidelines for additional glasswork processes here.

Glass Casting Firing Schedule

Glass casting is when you melt glass until it is soft and malleable enough to conform to a mold. The glass then hardens to create a glass object in the shape of the mold. Below is a glass casting firing schedule for a small open face mold cast:

A glass casting firing schedule for 90 COE glass.

  1. 100°F/Hr to 200°F – hold 6 hours.
  2. 100°F/Hr to 1250°F – hold 2 hours.
  3. 600°F/Hr to 1525°F – hold 3 hours.
  4. AFAP °F/Hr to 1200°F – hold 4 hours.
  5. 50°F/Hr to 900°F – hold 6 hours.
  6. 12°F/Hr to 800°F – hold 1 minute.
  7. 20°F/Hr to 700°F – hold 1 minute.
  8. 72°F/Hr to 70°F – hold 1 minute.

Additional details about casting firing schedules can be found here.

Annealing Firing Schedule

Annealing glass is the process of stabilizing glass during the cooling process by holding it at a steady temperature to give it time to strengthen. COE 96 glass is typically annealed at a setpoint of 960°F. However, the size of the glass, its thickness, as well as the number of layers being used determines how long the anneal hold needs to be.

From the example of the Full Fuse Firing Schedule above, we highlighted the steps that involved annealing in green:

An annealing firing schedule for a glass kiln

Notice that Step #3 has the kiln hold at the annealing setpoint 900°F for 30 minutes in order to give the fuse time to stabilize, and then Step #4 and Step #5 have the kiln slowly cooling down from the setpoint to the final temperature.

See our article Benefits of Using a Digital Controller for Glass Kilns for more information about using your kiln for glasswork!

Kiln Firing Schedules for Ceramics

Before getting into kiln firing schedules for ceramics, it’s important to know what Cone # the material you’re firing is rated for. This represents the setpoint at which the type of material you’re using is properly fired. So, for example, Cone 04 clay would need to reach a setpoint of at least 1945°F whereas Cone 6 Porcelain would need to reach a setpoint of 2232°F.

Please Note: All of these kiln firing schedules are for 04 Cone clay. Just like with glasswork, each firing schedule will have to be adjusted according to your specific kiln, the size of your project, as well as the type of clay, stoneware, or porcelain you’re using – some experimentation will be required, so please use these as a general guideline.

Candling Firing Schedule 

Candling is the process of allowing clay to fully dry prior to high temperature ceramic firings. This involves heating your kilns to a low temperature for a prolonged period of time. Below is an example of a kiln firing schedule for candling your clay:

A pottery kiln firing schedule for candling clay

  1. 150°F/Hr to 150°F – hold 12 hours.

Simple, right? However, this is just to get the clay ‘bone-dry’ before firing it, since the natural moisture of the clay, if fired too quickly, can cause your project to crack and fissure!

Bisque Firing Schedule for Cone 04 Ceramics

A bisque firing is the process of turning clay into ceramics! Below is a slow bisque firing schedule for Cone 04 clay:

A bisque firing schedule for Cone 04 ceramics

  1. 80°F/Hr to 250°F.
  2. 200°F/Hr to 1000°F.
  3. 100°F/Hr to 1100°F.
  4. 180°F/Hr to 1695°F.
  5. 80°F/Hr to 1945°F.

You’ll notice that this firing schedule doesn’t include any hold times. However, the total firing time is 13 hours and 26 minutes. So how does that work? In this case, the firing time is dictated by the ramp rate – or the amount of time it takes for your kiln to reach each setpoint in the firing schedule.

Glaze Firing Schedule for Cone 04 Ceramic

When firing pottery, it’s important to match the Cone # of your glaze to the Cone # of your clay. In this case, we’re using Cone 04 clay, which is a “low-fire” clay. Therefore, we’d want to use a glaze that’s in the Cone 06-04 range. In other words, the temperature of the glaze firing schedule shouldn’t exceed the temperature of the bisque firing schedule.

Glaze firing schedule for Cone 04 ceramics

  1. 150°F/Hr to 250°F.
  2. 400°F/Hr to 1695°F.
  3. 100°F/Hr to 1945°F.

See our article on How to Use a Pottery Kiln Temperature Controller for more information on how to fire ceramics!

Firing Schedules for Heat Treating Metals

Just like with glasswork and pottery, kiln firing schedules for metal heat treat is extremely dependent on the type of material you’re using. But, additionally, it’s dependent on the qualities you want the finished metal to have. For heat treat, the rate at which you cool the metal has a significant impact on the molecular structure of the metal. For these examples, we’ll be working with 1095 steel.

Please Note: All of these kiln firing schedules are for 1095 steel. Just like with Each firing schedule will have to be adjusted according to your specific kiln or heat treat oven, the type of metal you’re using, its thickness, as well as the desired properties – some experimentation will be required, so please just use these as a general guideline.

You can find more information about setpoints and cooling rates for different effects on different types of metal here.

Normalizing Firing Schedule for 1095 Steel

Normalizing is a process where metal is heated to an extremely high temperature for a defined period of time and then either air-cooled or furnace cooled at a controlled ramp rate. Normalizing relieves internal stress and ensures uniformity, resulting in harder, stronger metals. Below is a normalizing firing schedule for 1095 steel:

A schedule for normalizing 1095 steel in a heat treat oven

  1. AFAP°F/Hr to 1600°F – hold for 15 minutes.
  2. Remove knife or blade from the oven and allow to air-cool.

Quench Hardening Firing Schedule for 1095 Steel

Quenching is the process where metal is heated and then cooled rapidly by dipping it into an oil, polymer, or water, resulting in very hard, very brittle metal. This increases the hardening of the metal (but also its brittleness). Below is a quench firing schedule for 1095 steel:

Heat treat schedule for quench hardening 1095 steel

  1. AFAP°F/Hr to 1600°F – hold for 15 minutes.
  2. Remove knife or blade from the oven and quench in fast oil to 150°F.

Tempering Firing Schedule for 1095 Steel

After hardening, the metal is heated to a lower temperature to reduce excessive hardness and relieve internal stress. Tempering makes metals less brittle – it should be done within two hours after the steel cools from the quench hardening process. Below is a tempering firing schedule for 1095 steel:

Tempering firing schedule for 1095 steel

  1. AFAP°F/Hr to 400°F – hold for 2 hours.
  2. Allow knife or blade to slowly cool – either air-cooled or within the oven.

You’ll notice that most heat treat applications have simple kiln firing schedules that only involve a single setpoint and aren’t dependent on ramp rate. For this reason, it might make sense to use a single setpoint controller for heat treat applications like the TAP & Go by SDS Industries.

Check out Guide to Choosing Heat Treating Controllers for more information about different types of heat treatments!

The Easiest Way to Precisely Execute Kiln Firing Schedules

The TAP and TAP II Controllers by SDS Industries are the most advanced, precise, and easy-to-use digital kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Controller Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven to allow you to easily manage and execute your kiln firing schedules.

We invite you to explore our selection of programmable kiln controllers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP-Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Shop TAP Kiln Controllers CTA

CTA: A Better Way to Manage and Execute Your Kiln Firing Schedules

Posted on

14 Types of Electric Kiln Temperature Controllers

Blog header image for '14 Types of Electric Kiln Temperature Controllers,' featuring an image of a TAP Digital Touchscreen Electric Kiln Temperature Controller.

When it comes to controlling the temperature of an electric kiln, there’s a wide variety of electric kiln temperature controller options. Below are 14 types of kiln temperature controllers – from old school analog kiln sitters to advanced digital kiln controllers for complex firing processes.

Types of Electric Kiln Temperature Controllers

1. Manual Kiln Temperature Controllers

When kilns became electric in the early 20th century, every electric kiln had manual controls. With manual kiln temperature controllers, users set the temperature of their kiln through a combination of analog dials and switches. However, manual kiln controllers cannot adjust the temperature of the kiln or advance through a firing schedule without direct user input.

This means that manual kiln temperature controllers require constant hands-on management and aren’t suited for executing complex firing schedules that require high degrees of precision. However, since they’re inexpensive and have a minimal learning curve for managing user inputs (using a manual kiln controller is a lot like using a kitchen oven), manual kiln controllers are still widely used today.

2. Kiln Sitters

The first major innovation to electric kiln temperature controllers was the invention of the kiln sitter in the 1950s. Used with manual kiln temperature controllers, the kiln sitter was the original limit controller. Limit controllers add kiln safety by ensuring a kiln shuts off when a certain temperature threshold is met. Kiln sitters accomplish this for manual kilns through primitive technology. A sitter cone, inserted in the kiln sitter, melts at a certain temperature causing the kiln to power off.

Illustration showing the components of a kiln sitter with labels.
Although outdated compared to the automatic kiln controllers of today, the invention of the kiln sitter was a major early innovation in electric kiln temperature controllers.

3. Automatic or Digital Kiln Temperature Controllers

In the mid-1980s, the automatic kiln controller was invented. Automatic kiln controllers significantly streamline the firing process by managing the temperature of an electric kiln without user input. Also known as digital controllers, automatic kiln controllers allow users to program their device to reach the right temperatures at the right times without their direct oversight.

Automatic kiln controllers are far more precise than manual kiln controllers and leave less room for user error, making them more suitable for more complex firing schedules like those used for glasswork or some types of ceramic firings.

The first automatic kiln temperature controllers used analog inputs and had extremely complicated menus and user interfaces! However, over the last several decades automatic kiln temperature controllers have evolved massively. Today’s most advanced automatic kiln controllers are extremely easy to use and include responsive touchscreen controls, an intuitive UI, full control and extensive diagnostics, real-time monitoring and data, Wi-Fi connectivity, and mobile app integration.

The TAP Kiln Controller is the most advanced automatic electric kiln temperature controller on the market today.
The TAP Kiln Controller is the most advanced automatic electric kiln temperature controller on the market today.

4. 3-Key Kiln Temperature Controllers

For early automatic kiln controllers, users had analog buttons (or keys) to navigate menus and set the temperature of their electric kilns. A 3-key kiln temperature controller has three keys which the operator uses to program the kiln. As you can imagine, this can get extremely complicated! However, 3-key kiln controllers are still sold by certain manufacturers.

5. 12-Key Kiln Temperature Controllers

A 12-key kiln temperature controller includes additional keys, which makes programming an electric kiln slightly more convenient. However, compared to other more advanced electric kiln temperature controllers, 12-key controllers are still complicated to use and don’t present the best user experience.

(Note: If you’re still using a 3-key or 12-key controller, conversion kits allow you to easily replace them with more advanced digital touchscreen kiln controllers.)

6. Touchscreen Kiln Temperature Controllers

In 2015, SDS Industries released the TAP Kiln Controller which was the first commercially available electric kiln temperature controller to use a touchscreen user interface. Touchscreen kiln controllers make programming and monitoring temperature for an electric kiln much more intuitive and user friendly than 3-key and 12-key controllers.

With touchscreen kiln temperature controllers, navigating menus and creating firing schedules can be accomplished with just a few finger presses, and a larger screen and graphical UI allows users to see more details about their firing schedule and view detailed firing charts and diagnostics.

7. Multi-zone Kiln Temperature Controllers

Electric kilns come in two general configurations: single-zone and multi-zone kilns. Electric kilns are heated by resistive metal elements, much like those seen in a toaster oven. For single-zone kilns, all of the kiln’s elements respond to input from a single thermocouple. For multi-zone kilns, multiple thermocouples are used to sense temperature in different sections of the kiln and adjust power to the elements accordingly.

Multi-zone electric kiln temperature controllers, such as the TAP Kiln Controller, include multiple thermocouple inputs to set specific temperatures for different sections of the kiln, allowing users to obtain consistent firing results in a single large kiln.

8. Single-zone Kiln Temperature Controllers

Single-zone electric kiln temperature controllers, on the other hand, only have a single thermocouple, which is used to control all of the elements of a kiln and achieve a single temperature. Currently, the TAP II Kiln Controller is the most advanced and easy-to-use temperature controller for single-zone electric kilns and ovens on the market today.

The TAP II Controller is an advanced single-zone kiln temperature controller, with an intuitive, graphical UI, built-in Wi-Fi, and integration with the TAP Kiln Control Mobile App.
The TAP II Controller is an advanced single-zone kiln temperature controller, with an intuitive, graphical UI, built-in Wi-Fi, and integration with the TAP Kiln Control Mobile App.

9. Internet Kiln Controllers

Internet kiln controllers, or Wi-Fi kiln controllers, utilize a Wi-Fi signal to allow users to control and monitor their kiln from their mobile device or tablet. Internet kiln controllers give users far more flexibility and freedom when it comes to operating their electric kilns, allowing them to remotely create, modify, and execute firing schedules, monitor their kiln with real-time updates and push notifications, and skip steps and abort firings.

All of the TAP Kiln Controllers by SDS Industries have Wi-Fi capability and pair with the TAP Kiln Control Mobile App to give users almost complete remote control of their electric kiln.

The TAP Micro is an internet kiln controller that users control entirely from their smartphone or tablet.
The TAP Micro, now available for pre-order, is an internet kiln controller that users control entirely from their smartphone or tablet!

10. Single Setpoint Kiln Temperature Controllers

Single setpoint kiln controllers are a simplified electric kiln temperature controller option that allows users to program their kiln to reach a single setpoint (or temperature) for an indefinite hold. Not all firing schedules require multiple setpoints or specific ramp rates (the speed at which a kiln heats up). Single setpoint electric kiln temperature controllers are ideal for users who are making blades, knives, or doing other heat treat processes, or for glassblowers and flameworkers who are using pick up ovens.

11. Limit Controllers

Limit controllers, also known as high limit controllers or safety limiters, are redundant temperature monitoring devices that allow users to pre-program their electric kiln to automatically shut off if the kiln exceeds a specified temperature. While limit controllers usually aren’t suited to be the primary control method on an electric kiln, they are an important part of kiln safety and can protect you, your equipment, and your property in the case of relay or system failure.

The TAP Monitor is the most advanced limit controller and digital pyrometer, allowing users to add precise, remote, real-time digital temperature readings and redundant safety shut-off to any kiln or oven.
The TAP Monitor, now available for pre-order, is the most advanced limit controller and digital pyrometer, allowing users to add precise, remote, real-time digital temperature readings and redundant safety shut-off to any kiln or oven.

12. Process Controllers

A process controller is an automatic electric kiln temperature controller that employs a closed-loop digital feedback system to control and regulate the temperature of industrial control applications more precisely. Process controllers use a mathematical formula to calculate the difference between the input temperature and the current temperature of the application. The process controller then adjusts the output to compensate for the detected changes in the system, ensuring that the current temperature is as close to the expected temperature as possible.

TAP Kiln Controllers utilize PID (“Proportional Integral Derivative”) control algorithms to ensure precise schedule following with the fastest response with minimal overshoot and limited steady-state error.

13. ICS Kiln Controllers

ICS stands for Industrial Control System. An ICS kiln controller is a type of process controller that is rated for industrial applications. Industrial kilns are large and high-powered and require extremely high degrees of precision and consistency, usually accomplished by a control algorithm.

14. Standalone Automatic Kiln Controllers

How do you convert a manual electric kiln to automatic controls? A standalone automatic kiln controller is a plug-and-play solution to upgrade a manual kiln to digital controls. All you have to do is run the thermocouple attached to the standalone kiln controller to the interior of your kiln and plug your electric kiln into the standalone unit. This enables a standalone automatic kiln controller to bypass your manual control system, enabling you to enjoy all the benefits of an advanced digital touchscreen controller.

A table top standalone kiln controller allows you to easily upgrade a manual kiln to digital controls.
TAP Standalone Automatic Kiln Controllers allow users to easily upgrade their manual kiln to automatic controls.

Enjoy the Most Advanced, User-Friendly Electric Kiln Temperature Controllers

The TAP and TAP II Controllers by SDS Industries are the most advanced, precise, and easy-to-use electric kiln temperature controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Control Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of electric kiln temperature controllers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP-Controlled Kilns and Heat Treat Ovens through one of the following distributors:

Explore our line of TAP Electric Kiln Temperature Controllers.

Posted on

Complete Guide to Kiln Safety for Your At Home Kiln

Header Image for Complete Guide to Kiln Safety for Your At Home Kiln

When it comes to kilns, it’s safety first! With proper precautions, using an at home kiln can be an extremely safe and rewarding experience. But when temperatures run, you don’t want to take chances!

Kiln safety has three main phases: Installation, Operation, and Maintenance. In the guide below, we’ll be covering each of those phases more in-depth and providing tips for safe, seamless kiln firings.

Steps for Kiln Safety During Installation

Kiln safety starts with proper installation. When installing an at home kiln, there’s a couple things to keep in mind:

  • Select a space with proper flooring: Kilns get hot! Make sure to select a space with level flooring that’s non-combustible and able to withstand high temperatures. Concrete, tile, and linoleum floors will be more heat resistant than wood, vinyl, or carpet. Never leave your kiln directly on the floor. Always use the manufacturers included stand to ensure safe clearance from the floor below. Note: The same principles apply for table top kilns – make sure not to install them on flammable surfaces or tables.
  • Ensure proper clearance: Speaking of clearance, it’s extremely important that you give your kiln room to breathe. It’s recommended that your kiln should be located at least 18″ from non-combustible surfaces and 36” from combustible surfaces. (Note: This includes opening the lid to your kiln, so make sure to account for that as well during installation.)
  • Make sure the space is proper ventilated: Depending on the material you’re firing, your at home kiln may emit toxic gases or irritants like carbon monoxide, carbon dioxide, sulfur dioxide, or chlorine. Definitely things you don’t want to breathe! These gases may impair your health or even interfere with your ability to safely operate your kiln, so it’s important to make sure your kiln is properly ventilated and that respirators are used when dealing with noxious fumes.
  • Install your kiln in a dry area: Electricity and water don’t mix. If you’re using an electric kiln, it’s important to make sure you don’t install your kiln in an area that’s damp or exposed to moisture. Additionally, water can cause corrosion, which will reduce the life of your at home kiln components.
  • Follow manufacturer guidelines for installation: When you purchase your kiln, you should receive manufacturer guidelines for installation and kiln safety. Make sure to adhere to these closely when installing your kiln. If you purchase a used kiln, contact the manufacturer for installation guidelines.
  • Get any electric work done by a qualified electrician: At home kilns, especially larger ones, utilize a lot of electricity, so it’s important to make sure that you use a dedicated circuit with a properly rated power outlet and never use an extension cord. During kiln installation, it’s recommended that you enlist the help of a certified electrician to make sure your at home kiln is safely installed.
  • Make sure thermocouples are properly installed: Thermocouples help your automatic kiln controller precisely regulate the temperature of your kiln. However, thermocouples will only give you accurate temperature readings if they’re properly installed! Thermocouples should be inserted an inch or two into the interior or your kiln and should have at least 1″ clearance from any shelves, components, or any materials you place inside your kiln.
  • For DIY kiln builds, make sure relays are properly installed: Kiln relays ensure the safety of your kiln by cutting power to the elements if the kiln gets too hot. For DIY kiln or oven builds, it’s important to choose the right type of relay; for instance, solid-state and mercury relays will have far more longevity and reliability than mechanical relays. But it’s even more important to make sure that relays are properly rated and installed and that you utilize a safety relay to add redundancy in case one relay fails.
  • Don’t forget to check with your homeowners or business insurance carrier for any limitations or policy changes resulting from kiln use: Installing an at home kiln may affect your homeowners or business insurance policy – make sure to check with your provider to protect your financial safety!

Steps for Kiln Safety During Operation

Now that you have your at home kiln safely installed, it’s important to know kiln safety best practices for operation and firing:

  • Always use personal protective gear: During kiln firing, it’s important to use personal protective gear to ensure your safety. Kiln mitts or heat resistant gloves should be used when handling your kiln during firing, and dark, protective eyeglasses should be used to protect your eyes when looking into the kiln peepholes or when opening the lid.
  • Keep a fire extinguisher nearby: High temperatures increase risk of fire, so it’s always recommended to keep a fire extinguisher on hand beside your at home kiln.
  • Do not leave your kiln unattended during firing: Although modern digital kiln controllers provide temperature safety shutoff, alerts, alarms, and the ability to monitor and control your kiln remotely from your mobile device, it’s still recommended to never leave your kiln unattended during firing.
    Diagnostics and kiln status on the TAP Kiln Control Mobile App
    The TAP Kiln Control Mobile App allows you to monitor the status of your kiln, control your kiln remotely, and review error reports.
  • Exercise caution if you need to open lid or door when your kiln is operational: Occasionally, it may be necessary to open the lid or door on your at home kiln while the kiln is operational. But when you do so, exercise extreme caution! Always wear protective gear and stand to the side of the lid or door whenever possible.
  • Let kiln cool before unloading: Even after your kiln completes a firing schedule, it can remain hot for hours. Always let your at home kiln cool completely before unloading. It’s also important to let your wares cool inside the kiln to prevent them from being cracked by abrupt changes in temperature.
  • Do not place combustible materials on or near the kiln: Before firing, always check to make sure your at home kiln still has proper clearance. Prior to and during firing, make sure not to leave anything on top of or next to your kiln.
  • Do not leave your kiln unattended near children or pets: Even if you’re aware of proper kiln safety procedures, it doesn’t mean that your children or pets will exercise the same precaution. Do not leave your kiln running in an area where children or pets will have access.
  • Wash your hands after handling: Thoroughly washing your hands after handling your ware keeps you from potentially ingesting toxic materials.

Kiln Maintenance and Upkeep

Kiln safety isn’t just limited to installation and operation. Regularly maintaining your at home kiln will ensure safety and prolong the life of your kiln components:

  • Clean the kiln between firings: Between firings, clean your kiln to ensure there is no residue or debris.
  • Always unplug your kiln before making repairs: Always unplug your at home kiln when making repairs or modifications. For additional safety, it may be prudent to leave your kiln unplugged any time you’re not using it.
  • Regularly inspect electrical components: Regularly inspect the electrical components of your at home kiln for discoloration, brittleness, or corrosion. Immediately replace these components if necessary.
  • Regularly replace thermocouples: In order to ensure accurate temperature readings for your at home kiln, it’s recommended to replace Type K Thermocouples every 30 to 50 firings.
  • Invest in digital controllers that have advanced onboard diagnostics and preventative maintenance alerts: Manual inspection has its limitations. Advanced digital kiln controllers like the TAP and TAP II Controllers from SDS Industries include onboard diagnostics, enhanced data logging, and preventative maintenance alerts to help you stay up-to-date on kiln maintenance.

The Role of TAP Automatic Kiln Controllers in Ensuring Kiln Safety

Even with all of these kiln safety tips, the safety of your at home kiln is also determined by the quality of your kiln components and the precision and reliability of your kiln controller. At SDS Industries, we are dedicated to providing the most advanced, precise, reliable controllers for your at home kiln, oven, or furnace. But more than that, we equip our controllers with features and functionalities that enhance kiln safety. These kiln safety features include:

  • PID-driven precision to ensure that your kiln precisely adheres to its intended firing schedule with fast response, minimal overshoot, and limited steady-state error.
  • Max temperature safety shutoff to ensure your kiln doesn’t surpass its rated temperature.
  • Integration with the TAP Kiln Control Mobile App to provide you with advanced diagnostics, abort firing, and preventative maintenance alerts – so you have insight into your kiln firings even if you have to step away from your project.
  • Preventative maintenance alerts, with relay, thermocouple, and element life reporting.
  • Kiln error information and diagnostic features to keep you informed of any past, present, or future kiln component failures.

Introducing TAP Monitor Digital Pyrometer 

Additionally, as part of our dedication to kiln safety, SDS Industries is excited to announce the TAP Monitor Digital Pyrometer. Available as a standalone device that plugs right into your kiln, or as configurable components for installation, the TAP Monitor Digital Pyrometer adds precise temperature readings, remote monitoring, push notification alerts, and safety redundancy to any relay-controlled kiln or oven.

The TAP Monitor seamlessly integrates with the TAP Kiln Control Mobile App to let you remotely monitor the status of your kiln from your smartphone, watch, or tablet – regardless of what controller your kiln uses. These features will enhance kiln safety for manual or automatic kilns and add safety redundancy and max temperature shutoff in case of relay failure.

The TAP Monitor Digital Pyrometer will be releasing soon, but you can already preorder your standalone unit here or as a set of configurable components for DIY installs here.

Choose the Most Advanced, User-Friendly Automatic Kiln Controllers 

For added kiln safety and ease-of-use, the TAP and TAP II Controllers by SDS Industries are the most advanced, precise, and easy-to-use automatic kiln controllers on the market today. With responsive touchscreen controls, an intuitive graphical UI, and integration with the TAP Kiln Controller Mobile App, TAP Kiln Controllers can pair with any relay-controlled kiln or oven.

We invite you to explore our selection of automatic kiln controllers, standalones, and conversion kits on our online store. You can also purchase TAP Digital Controllers or TAP-Controlled Kilns and Heat Treat Ovens through one of the following distributors: